Squids

The extreme sensitivity of SQUIDs make them ideal for studies in biology. Magnetoencephalography (MEG), for example, uses measurements from an array of SQUIDs to make inferences about neural activity inside brains. Because SQUIDs can operate at acquisition rates much higher than the highest temporal frequency of interest in the signals emitted by the brain (kHz), MEG achieves good temporal resolution.
Probably the most common use of SQUIDs is in magnetic property measurement systems. These are turn-key systems, made by several manufacturers, that measure the magnetic properties of a material sample. This is typically done over a temperature range from that of liquid helium (~4K), to a couple of hundred degrees above room temperature.
Another application is the scanning SQUID microscope, which uses a SQUID immersed in liquid helium as the probe. The use of SQUIDs in oil prospecting, mineral exploration, earthquake prediction and geothermal energy surveying is becoming more widespread as superconductor technology develops; they are also used as precision movement sensors in a variety of scientific applications, such as the detection of gravity waves. Four SQUIDs were employed on Gravity Probe B in order to test the limits of the theory of general relativity.
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home